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Motivation

- About 1.25 million people die each year as a result of road traffic crashes
- Without sustained action, road traffic crashes are predicted to become the seventh
leading cause of death by 2030

World Health
Organization
Cause of Traffic Crashes

® Driver
® Driver + Road
= Driver + Vehicle

Vehicle
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Background
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Driving Bhavior Path Planning Car-following Lane change | Interwoen road | Intersection
H-V-R Coupling Extrinsic Features of Traffic System Traffic Efficiency

Human s Path planning MR g
I + Motion planning

Vehicle ¢ Motion con’FroI

¢ Road Capacity
I ¢ Service Level
Road

Autonomous Vehicle : a Crucial part of ITS
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Related Works

Model Based : Pre-defined control strategies

Model Free : DL based Learning Process

= Massachusetts
Institute of
Technology

Imagination

Deep Learning: More adaptive to the complexity in real traffic scenarios
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- Input: Human-level Control Through Deep Reinforcement Learning (Nature)
- Algorithm: Convolutional LSTM + 3D-CNN + FCNN
- Output: Motion planning (Steering angle)

Camera Data

Frame combinationI

Preprocessing Visualization

Raw image > Steering angle 9
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Data Preprocessing

Multi-frame data
Dim: 320*160*3*3

Raw image

¥ Dim: 320*160*3

Frame Combination:
Time based 3 continuous frames
| Fuseintoa higher dimensional data format

| | >

Came

Time series

Single frame image - Time based visual data 10
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Convolutional LSTM

- Conv-LSTM :
- Based on multi-frame picture segments
- Use batch normalization between two layers

'?:t = J (II}@ * JX;{; -+ I"I-"rh;; * H t—1 -+ I.-][-"TC?; O Ct—l -+ b%)

ft = Cf( W, f % Xe + Wy £ % Hi 1+ W, fo Ci_1+0b f)

Cy = ft+icotanh(Wae x X¢ + Whe * Hi—1 + be)

0 = U(II’TIO x« Xy +Whox Hi_y +W,, 0 C} + bo)‘
H; = o4 otanh(Cy)

Temporal

i;: Input gate at time t 0 : Out put gate at time t

f+: Forget gate at time t H;: Hidden gate at time t
Cy: LSTM cell at time t

Extracting the temporal hidden feature information 1
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3D-CNN

- 3D-CNN:
- Build a cube by stacking multiple consecutive frames
- Use the 3D convolution kernel in the cube

CONYOLUTIONS

Temporal

-~

3D-CNN

Capturing the temporal and spatial features of time based image stream 12
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Final DL Model

99.4712%

Spatiotemporal LSTM Network

Raw data Visualization
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Activation Function Loss Function - )
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LeakyRelLU = <0 MSE(x,y) = z (X = yi)
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Learning the data from both spatial and temporal dimensions 13
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Experiment

- Experimental platform : ubuntu16.04LTS + Tensorflow + Keras

@ N K Inter i7-6700 CPU @ 3.4GHz
T . + 4+ 32 GBRAM
l. €ras NVIDIA GTX 980 GPU
U b untu Tensor

- Database : Comma-ai Dataset

Dataset content:

- 80GB data
- Raw image data and vehicle actual state data

« Collected from the vehicle-based sensors respectively




Progress of Experiment Making
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Result & Visualization (@) seotons

Contrast experimental results

evaluation results
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accuracy
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99.8336%

- Our method: high accurate and stable

- Hotz's method: Can achieve the high
accuracy sometime but with higher
fluctuation

Spatiotemporal LSTM Network : Get more accurate and stable results 17



Result Video
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Conclusion

- It can drive vehicle!! But not smart at all scenario
- The Spatiotemporal LSTM Network has the ability to learn the data from
both spatial and temporal dimensions.
- Spatial: more precise results in motion output
- Temporal: more stable motion in complex scenario
- Changing layers and parameters can cause much better result
- Need more 3D-CNN layer, more FCNN layer!

- More training time!!
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After This Project...

- Training the algorithm with a better computer in lab!

- Read and implement more papers to reinforce my DL algorithm
- Training and testing algorithms with more dataset

- Compare the results in different sensor data

- Lidar + Image

- Only Image
- Only Lidar (
| | 48
- Implement in a real vehicle? '.'-‘






